A Passive High Altitude Deorbiting Strategy
نویسندگان
چکیده
A de-orbiting strategy for small satellites, in particular CubeSats, is proposed which exploits the effect of solar radiation pressure to increase the spacecraft orbit eccentricity so that the perigee falls below an altitude where atmospheric drag will cause the spacecraft orbit to naturally decay. This is achieved by fitting the spacecraft with an inflatable reflective balloon. Once this is fully deployed, the overall area-to-mass ratio of the spacecraft is increased; hence solar radiation pressure and aerodynamic drag have a greatly increased effect on the spacecraft orbit. An analytical model of the orbit evolution due to solar radiation pressure and the J2 effect as a Hamiltonian system shows the evolution of an initially circular orbit. The maximum reachable orbit eccentricity as a function of semi-major axis and area-tomass ratio can be found and used to determine the size of balloon required for de-orbiting from circular orbits of different altitudes. A system design of the device is performed and the feasibility of the proposed de-orbiting strategy is assessed and compared to the use of conventional thrusters. The use of solar radiation pressure to increase the orbit eccentricity enables passive de-orbiting from significantly higher altitudes than conventional drag augmentation devices.
منابع مشابه
Accommodating the plasma brake experiment on-board the Aalto-1 satellite
Abstract. This paper presents an overview and the current status of hosting the electrostatic plasma brake (EPB) experiment onboard the Finnish Aalto-1 satellite. The goal of the experiment is to demonstrate the use of an electrostatically charged tether for satellite attitude and orbital maneuvers. The plasma brake device is based on electrostatic solar sail concept, invented in Finnish Meteor...
متن کاملPhysiological Components and Physical Combat Readiness in Warm, Cold, and High Altitude Extreme Environmental Conditions: Narrative Review
Military forces based on their mission have to deployment and executed military operation in extreme environmental conditions, they simultaneously experience nutritional and sleep disorders and endure mental stress. This condition plays essential role in body hemostasis, military fitness components and finally commanded mission's success. Neglecting above mentioned condition physiological respo...
متن کاملRanking Passive Seismic Control Systems by Their Effectiveness in Reducing Responses of High-Rise Buildings with Concrete Shear Walls Using Multiple-Criteria Decision Making
In recent decades, the dual systems of steel moment-resisting frames and RC shear walls have found extensive application as lateral load-resisting systems for high-rise structures in seismically active areas. This paper investigated the effectiveness of tuned mass damper (TMD), viscous damper, friction damper, and the lead-core rubber bearing in controlling the damage and seismic response of hi...
متن کاملHigh altitude acclimatization and athletic performance in horses
High altitude acclimatization produces a suite of physiological changes that might support an improved athletic performance at low altitude and thus lead to the strategy of athletic training at high altitude. Although there is substantial literature on high altitude physiology in humans, there are few studies on horses. Our interest in the physiological responses to high altitude in equids has ...
متن کاملSupplemental L-arginine Modulates Developmental Pulmonary Hypertension in Broiler Chickens Fed Reduced-Protein Diets and Reared at High Altitude
This experiment was conducted to evaluate the effects of supplemental L-arginine (ARG) in reduced-protein diets on cardiopulmonary performance and intestinal morphology in the broilers reared at high altitude. A total of 156 day-old male broilers were randomly assigned to 3 treatments and 4 replicates of 13 chicks and reared up to 42 days of age. Treatment groups were designed as a normal-prote...
متن کامل